System Formulation Part 2: Running the model

ExtendSim Model with input and ouput

The SPICOSA SSA 7.6, Søndeledfjorden, Norway
 Version 1.20 (19 July 2009)

Erlend Moksness ${ }^{1}$, Jakob Gjøsæter ${ }^{1}$, Inga Wigdahl Kaspersen ${ }^{2}$, Eirik Mikkelsen ${ }^{3}$, Håkan T. Sandersen ${ }^{5}$ and Jon Helge Vølstad ${ }^{1}$
1) Institute of Marine Research, Flødevigen Marine Research Station, 4817 His, Norway
2) University of Tromsø, Department of Economics and Management, 9037 Troms \varnothing, Norway

3) Norut AS, Postboks 6434 Forskningsparken, 9294 Troms \varnothing, Norway
4) Institute of Marine Research, 5817 Bergen, Norway Bod \varnothing University College, Dep. of Social Science, 8049 Bod \varnothing, Norway

ExtendSim Model developer

Guillaume Lagaillarde, 1point2, France

Table of Content

Page

1. What you need 3
2. General description 4
2.1 Environmental component (NC) 4
2.2 Social component (SC) 6
2.3 Economic component (EC) 7
3. Changing Input parameters 8
3.1 General 8
3.2 Environmental component (NC) 8
3.3 Social component (SC) 9
3.4 Economic component (EC) 11
3.5 Indicators 12
4. Regulations and scenarios 13
5. Output and export of data 16
5.1 General 16
5.2 Environmental (cod population) 16
5.3 Economic 18
5.4 Export of data to MS Excel 19
6. Adopting the model to other local cod stocks and fjord systems 20
7 Calculations 20
7.1 Ecosystem (Cod population) 20
7.1.1. Estimating annual recruitment (Number of 0-group cod) 20
7.1.2. Estimating cohort sizes over the chosen time frame 20
7.1.3. Estimating survival from 0-group to 1-group cod 21
7.2 Social 23
7.3 Economic 24

1. What you need

Make sure you have the following files in the same folder:

- The ExtendSim Model
- CodFish.lix
- ExportedData.xls

It is possible to set simulation duration up to 50 years. You can run up to 100 simulations.

2. General description

2.1 Environmental component (NC)

The ecosystem model is a demographic model that projects the abundance of the coastal cod (Gadus morhua) population in SSA 7.6 (Søndeledfjorden, Norway) in numbers by age (0-10 years age groups) forward in time.

- The model is running with yearly time-steps over a period of 1-50 years.
- Recruitment of 0-group cod are randomly picked by the model from a distribution of historical data.
- The total population size and the strength of the different year-classes of cod is a function of natural predators (as birds and mammals) and fishing mortality (caused by tourists and commercial) and other human activities (Eco-tourists etc).
- The cod spawning stock (SS) consists of age-groups 4-10.
- The default fishable stock consists of age-groups 2-10, however, will vary between user groups
- Several policy instruments influence the dynamics of the cod population: TAC (total allowable catch on each year-class per year), amount of bottom habitat occupied by marinas, and the number of predators (birds and mammals) which can be controlled by hunting.

In the following tables and figures you can view the different tables used in the ecosystem component in the model.

Input Tables	Content Table	Corresponding table in Part 1
CodDatas (1)	Default values on the cod population	Table 1.1 and Table 1.5
EcosystemData (3)	Default values for different input parameters	
0-GroupRecruitment (6)		
Indicators (31)	Values for the different indicators (traffic lights)	
Output Tables	Numbers of cod in the different year-classes	
PopulationHistory (2)	Lengths and weights of cod in the different year-classes	
WeigthHistory (8)	Cod dying in the different year-classes	
DyingHistory (10)		

1.2 Social component

Several policy instruments influence the dynamics of the cod population: TAC (total allowable catch on each year-class per year), amount of bottom habitat occupied by marinas, and the number of predators (birds and mammals) which can be controlled by hunting. (The model reflects the 2008 situation without any regulations).

In the figure below are given the different tables used in the social component in the model. The input tables are given in the table below with corresponding tables in "Part 1- Description".

Input Tables	Content Table	Corresponding section in Part 1
Construction regulations (19)	Boat marinas construction	Section 2.5.2.1
Sourist Service Level (21)	Sandy beaches construction	Used to calculate FisherTourist
Sandscape quality (23) 4.2		
Fishers Service Level (24)	Used to calculate FisherTourist	Section 4.2

1.3 Economic component

The main aim of economic component is to estimate (net) local economic benefits from tourism in the Søndeledfjord area. This is set equal to Risør municipality in our case. The economic benefits/costs related to tourism that we consider come from 1) expenditures from tourists visiting the area (except 2nd home building and maintenance), and multiplicator effects of those expenditures, 2) the building and maintenance of 2nd homes + multiplicator effects, 3) changed income in commercial fishery due to changes in the coastal cod stock due to tourism (fishing + habitat changes), and 4) net local costs of coastal cod stock enhancement.

In the figure below are given the different tables used in the economic component in the model. The input and output tables are given in the table below with corresponding tables in "Part 1- Description".

Input Tables	Content Table	Corresponding table in Part 1
Touristfactors (17)	Contain default values of parameters	Table 3.3
OtherParameter (27)	Contain default values of parameters	Table 3.4
HumanHarvest (30)	Contain default values of parameters	Table 1.3
CommersialFisheryData (31)	Contain default price for cod	Chapter 3.3
2ndHomeData (32)	Default economical parameters	Chapter 3.2
Output Tables	Number of tourist-days in the different categories	
TouristHistory (16)	Cost in the different categories	
ExpenditureHistory (28)	Income from the different categories	
LocalBenefHistory (29)		

3. Changing Input parameters

3.1 General

When running the model you can change the input values by selecting the four tables in the upper left corner of the front page of the model. These tables are the same as in the database described under section 1.	Inputs

3.2 Environmental components (NC)

Input data for the ecosystem model

Seals data	－Viewer＂CodFish［1］－＞Seals［9］＂（Local Cod Regulation Model v 1．20．mox）					
	平	部边にこ				
	Record＊	Data	Value	Unit	Comment	FishesEatenper Seal
		Intial populition		${ }_{\text {selis }}$	Number fot selas Number of seals（deta）	
						240995
			4，0000eetio	Tisthisealimearidenssty		
		${ }^{3}$ 3．group oonsunption	d．0．0000e＋f＋00			${ }_{0}^{0.00}$
	${ }_{8}^{8}$		0．0000e＋f0	Tisthsealiearidessity		${ }_{0}^{0.00}$
		7－grop consumption	0，0000 0 ＋0 0	fishlsealiveardensity		0.00
						a 0.000 0.000

3．3 Social component（SC）

In addition the fishing effort，coefficients in the Schaffer model and minimum fish size（represented by minimum year－class）（Table 1.3 in the document＂Part 1：ExtendSim Model description＂）can be changed Extend input table＂HumanHavest（30）＂．
[Viewer "CodFish[1]->HumanHarvest[30]" (2009-06-11GL.mox)

+	La \because									
lecord \#	Category	Effort Indicator	Percent Effort (FE)	Unit	Catchability Coef (q)	$F E \times q$	Min year class $(x-10)$	Hanvests on (tons)	Fishing potential	Hanvest (tons)
	Hotel tourist	tourist days	0\%	days	$0,000 \mathrm{e}+00$	$0.000 \mathrm{e}+00$	0	103,564	32820	0.000
	Camping tourist	tourist days	2%	days	1,000e-05	2,000e-07	1	102,956	33566	0,691
	2nd Home ouners	tourist days	3\%	days	1,330e-05	3,990e-07	0	103,564	115563	4,775
	2nd Home renters	tourist days	3\%	days	1,330e-05	$3,990 \mathrm{e}-07$	0	103,564	100188	4,140
	Fishing tourists	tourist days	75%	days	1,670e-05	1,252e-05	2	101.758	2588	3.298
	Commercial fishers	vessel days at sea	100\%	days	6,667e-03	6,667e-03	2	101,758	51	34,598

Table 1.3 in the document "Part 1: ExtendSim Model description".

Category	El - Effort Indicator	FE - Fishing effort as proportion of El	Fishing effort unit	q-Catchability coefficient	Catch per unit effort indicator, per cod stock unit (= FE * q)	Year-classes harvested on	Example El value	"Normal" cod stock biomass (tonnes)	Example harvest tonnes biomass
								30	
Hotel tourists	Tourist days	0	days	x	x	X	32000		0,00
Camping tourists*	Tourist days	2 \%	days	1,00E-05	0,0000002	1-10	35000		0,21
2nd home owners	Tourist days	3 \%	days	1,33E-05	0,0000004	0-10	115000		1,38
2nd home renters*	Tourist days	3 \%	days	1,33E-05	0,0000004	0-10	100000		1,20
Fishing tourists**	Tourist days	75 \%	days	1,67E-05	0,0000125	2-10	4000		1,50
Recreational fishers	Active days	75 \%	days	1,67E-05	0,0000125	2-10	4000		1,50
Commercial fishers***	vessel days at sea	100 \%	vessel days	0,006666667	0,006666667	2-10	50		10,00
							Sum harvest tonnes		15,79
* Not counting Fishing tourists, even though they may be staying at this type of accomodation									
** Each boat with fishing tourist catches $1,5 \mathrm{~kg}$ cod per day, and have ca 3 tourists per boat on average (Volstad 2009, prelim results survey)									
*** Commercial fishermen catch about 10 tonnes cod per year in the Søndeledfjord system. We assume with 50 vessel days.									

3.4 Economic component (EC)

3.5 Indicators

雨	- $-\square$					
Record \#	Indicator	Value	Unit	GreenLimit	RedLimit	Max
1	Cod biomass (2-10 group)	3,24e+00	tons / km2	$1,00 \mathrm{e}+00$	6,00e-01	$3.00 \mathrm{e}+00$
2	0 group density	1,29e+03	fishes / km 2	$4,00 \mathrm{e}+03$	1,00e+03	$3.00 \mathrm{e}+04$
3	1 group density	$5,57 \mathrm{e}+02$	fishes / km 2	$1,50 \mathrm{e}+03$	$5.00 \mathrm{e}+02$	$5.00 \mathrm{e}+03$
4	Demographic index	$1.83 \mathrm{e}-01$	16 D/2-100	$1.00 \mathrm{e}+00$	$5.00 \mathrm{e}-01$	2,00e+00
5	Level of conflict (equ.3.1)	$9.54 \mathrm{e}+00$	Index	$1.00 \mathrm{e}+00$	$5,00 \mathrm{e}+00$	1,00e+01
6	Commercial cod fishing		tons / year	$1.00 \mathrm{e}+01$	7,00e+00	2,00e+01
7	Local economic benefits	6,23e+07	NOK	$5.00 \mathrm{e}+08$	2,00e+08	1,00e+09
8	Number of tourist days	3,26e+02	Persons/day	$1.00 \mathrm{e}+03$	$2,00 \mathrm{e}+02$	$5.00 \mathrm{e}+03$

4 Regulations and Scenarios

Eel-fishers

The default number of eel fishers is set to 3.	$<\alpha\|<\|>\| \gg 1$

$2^{\text {nd }}$ homes
The present numbers of $2^{\text {nd }}$ homes in the study area is 1523 . Over the next years it might expand to nearly 2000. The effect of each $2^{\text {nd }}$ home is that the available 0 -group cod habitat is reduced with $50 \mathrm{~m}^{2}$.

Recreational fishers
The numbers of recreational fishers are dependent of number of municipal inhabitants

Camping tourists

The numbers of camping tourists are dependent on parameters given in the economical component.

Tourist fishers

The present numbers of tourist fishers are dependent on the number of beds available and quality of the facilities

Commercial fishers

The numbers of commercial fishers are are set directly.

Stock enhancement

0-group and 1-group cod can be produced artificially for release. This option gives the possibility to produce and release both yearclasses. Double click on the picture and double click on "stock enhancement" bottom	0-grouphyear :0 1-group/year:0 fishestyear :0			
	[140] EnhancemStock Enhancement\|			
You are now able to change the number of 0and 1-group cod and the production cost for these	- Viewer "CodFish[1]->StockEnhancen			
	雨	-		
	Record \#	Group	Enhancement	Cost
		$\left\lvert\, \begin{aligned} & 0 \text {-group } \\ & 1-\text { group } \end{aligned}\right.$	$0,0000 \mathrm{e}+00$ $0,0000 e+00$	$\begin{aligned} & \hline 8,00 \\ & 12,00 \end{aligned}$

5. Output and export of data

5.1 General

When running the model you can view the output values by selecting the four tables in the lower left corner of the front page of the model (circled in red). These tables are the same as in the database described under section 1.	Outputs cod pop. history At
At present he values given are only from the last run of the model.	Tourists history Income

In addition the model shows the changes in fisheries and a set of indicators as the model progress.

5.2 Environmental (Cod population)

This table gives the number of cod by age-groups over a 1-50 years period.

$\begin{gathered} \text { Exte } \\ \\ \square \end{gathered}$	\] Viewer "CodFish[1]->PopulationHistory[2]" (2008-11-02-GL-CodFishcontb.mox)												$\square \square$
	Record \#	0-Group	1.Group	2-Group	3-Group	4 Group	5 Group	B-Group	7-Group	8-Group	9-Group	10-Group	\wedge
	1	725062	48155	29211	10105	3162	1302	602	243	108	45	27	
Ope	2	255194	16241	29211	10104	3166	1298	${ }_{603}$	241	110	45	31	
	3	${ }^{108692}$	${ }_{7}^{20127}$	9852	10104	${ }^{3166}$	1300	${ }_{601}^{601}$	242	110	46	31	
	4	${ }^{83526}$	7354	12709	3408	${ }^{3166}$	1299	${ }_{601}$	241	110	45	31	
	5	88294	${ }^{9353}$	4461	4223	${ }^{1068}$	1299 438	${ }_{601}^{601}$	241 241	109	45 45	31 31 31	
	${ }_{6}^{6}$	${ }_{339388}^{49105}$	9138 5125	${ }_{5654}^{567}$	1543 1963	${ }_{483}^{1323}$	438 543	601 203	241 241	110 110	45 45	$\begin{aligned} & 31 \\ & 31 \end{aligned}$	
	8	79846	41498	3109	1917	615	198	251	81	110	45	31	
M	9	506361	2326	25173	1075	601	252	92	101	37	45	31	
Ins	10	4290	69143	1411	8707	337	247	117	37	46	15	31	
	11	50842	42	41942	488	2728	${ }^{138}$	114	47	17	19	10	
	12	93673	7597	25	14508	153	1120	64	46	21	7	13	
	13	${ }^{311038}$	${ }^{10390}$	4808	$\stackrel{9}{1594}$	4545	${ }_{1}^{6366}$	518	${ }^{26}$	21	9	5	
	14	${ }_{10}^{207888}$	30900	${ }_{180744}$	1594	3	1866	${ }^{29}$	${ }^{208}$	12	9	6	
]	$\left\lvert\, \begin{aligned} & 15 \\ & 16 \\ & 1 \end{aligned}\right.$	${ }_{401153}^{100884}$	${ }_{10489}^{91947}$	18744 5679	2180 6484	498 683	${ }_{205}$	884 1	12 348	${ }_{5}^{94}$	5 3	6 3	
	17	401153 23969	${ }_{960}^{104847}$	${ }_{63600}$	6434 1930	683 2031	${ }_{280}^{205}$	95	${ }_{0}^{346}$	157	${ }_{2}$	26	
	18	${ }_{46353}^{20153}$	34540	583	21999	605	834	130	38	0	65	1	
g	19	44975	1776	20952	202	6892	248	386	${ }^{52}$	17	0	44	
	${ }^{20}$	5573	6276	1078	7247	${ }^{63}$	2829	115	155	${ }^{24}$	7	0	
	${ }^{21}$	57505	651	3807	373	2271	26	1309	46	70	10	5	
	${ }_{23}^{22}$												
	23 24												
	2428												

This table gives the weight of the cod by age-groups over a 1-50 years period.

[] Viewer "CodFish[1]->WeightHistory[8]" (2008-11-02-GL-CodFi... $\square \times$							
兩	还						
Record \#	\|o-group	1-Group	2-Group	3-Group	4 Group	5-Group	6-Group
1	62419	49871	39871	17974	6824	3570	2302
2	21969	16803	39854	17974	6836	3582	2275
3	9357	20873	13452	17947	6829	3594	2231
4	7191	7632	16690	6027	6868	3550	2289
5	7601	9751	6080	7492	2299	3576	2234
6	4227	9488	7735	2731	2834	1211	2263
7	29217	5292	7583	3488	1041	1472	758
8	6874	43009	4267	3399	1306	533	953
9	43591	2382	34309	1874	1294	677	352
10	369	71736	1927	15492	741	690	419
11	4377	44	57280	863	5853	371	447
12	8064	7838	34	25763	329	3091	239
13	26776	10749	6282	12	9849	167	1923
14	17897	32060	8594	2813	5	5115	106
15	86678	9552	25543	3847	1080	3	3242
16	34534	108674	7558	11443	1470	571	0
17	20634	988	86765	3423	4413	763	351
18	3990	35738	793	39047	1296	2283	497
19	3872	1858	28604	354	14837	673	1460
20	480	6537	1471	12875	135	7704	430
21	0	0	0	0	0	0	0
22	0	0	0	0	0	0	0
23	0	0	0	0	0	0	0
24	0	0	0	0	0	0	0
25	0	0	0	0	0	0	0
26	0	0	0	0	0	0	0
27	0	0	0	0	0	0	0
28	0	0	0	0	0	0	0
29	0	0	0	0	0	0	0
30	0	0	0	0	0	0	0
31	0	0	0	0	0	0	0
32	0	0	0	0	0	0	0
33	0	0	0	0	0	0	0
34	0	0	0	0	0	0	0
35	0	0	0	0	0	0	0
36	0	0	0	0	0	0	0
37	0	0	0	0	0	0	0
38	0	0	0	0	0	0	0
39	0	0	0	0	0	0	0
40	0	0	0	0	0	0	0
41 4 4 1	In	n	n	n	n	n	n

By choosing results the below figure will appear. The figure shows the average number (solid blue) and weight (solid red) of cod + the same values from the last run as stippled

In addition the values for:

- Density 0-1-gr (number km^{-2})
- Biomass (2-10 yrs) (ton km^{-2})
- Commercial fishing (2-10 yrs) (ton km^{-2})
- Conflict Factor
- Local income
are given below and present output values from the model.

5．3 Economic

The results from the economic run will be displayed and exported similar to the ecosystem data（Not available yet）

This table gives the number of person pr day（ T_{0} ）over a time period（1－50 years）selected．The same Table as TouristHistory in Databases．Corresponds to Table 3.3 and 3．5．

This table gives the income over 1－50 years period．

\＃Viewer＂CodFish［1］－＞LocalBenefllistory 1［29］＂（2009－07－19GL．mox）										
雨	L上 三－									
Record \＃	Second home howners	Fishing tourists	Second gome renters	Staying at hotel	Camping	L6	L7	com．Fishery	Stock Enhancement	Total
1	18044775	0	4503600	0	26345088	0,00	7505568，00	144040	0	56543071
2	20766988	910383	15431909	150936	29700397	0.00	7505568，00	215985	0	74682166
3	20564956	945710	15421938	261671	31909641	26073052，97	7593242，22	185934	0	102956144
4	19842278	472074	15335644	0	27305923	0,00	7593696，00	123306	0	70672922
5	20602044	930612	15444003	250070	31171752	0,00	7593696，00	239100	0	76231277
6	20539840	926993	15372461	199271	32040068	7276946．42	7618165.73	65024	0	84038770
7	20298741	833572	15535469	329295	30492021	0，00	7618176，00	327483	0	75434757
8	20546359	929668	15398611	225624	31862354	0.00	7618176，00	177175	0	76757968
9	20532363	914674	15334271	149349	32105134	2371656．82	7626151，02	120657	0	79154255
10	20451039	842456	15274514	30123	31545931	0,00	7627968，00	56497	0	75828527
11	20546191	901686	15297213	91704	32002231	0，00	7627968．00	70552	0	76537545
12	20536878	923560	15356633	180651	32101997	911353，89	7631032，55	25932	0	77668037
13	20502979	982669	15586488	491570	31926010	0,00	7632864，00	392386	0	77514966
14	20517516	911789	15336534	153443	32128035	0,00	7632864，00	130445	0	76810627
15	20531618	892023	15267383	55927	32111779	139234，82	7633332，20	38174	0	76669471
16	20532295	902137	15302135	102257	32070855	135065，83	7638214，18	67317	0	76750276
17	20530753	908807	15322788	131355	32073932	6485．53	7642677.81	99948	0	76716746
18	20533285	902394	15297154	97374	32105913	0.00	7647552，00	79459	0	76663131
19	20534368	894358	15272628	62953	32104884	24253．28	7647633.55	59704	0	76600782
20	0	0	0	0	0	0,00	0,00	0	0	0
21	0	0	0	0	0	0,00	0，00	0	0	0
22	0	0	0	0	0	0,00	0,00	0	0	0
23.	10	0	0	0	0	0，00	0．00	？	0	0

5.4 Export of data to MS Excel

The data from each run are automatically saved in a Excel spreadsheet named (Exportresults.xls) Remember to save the excel file with a new name if you like to keep the data.	ExportedData.xls Microsoft Office Excel 97-2003 Work... $462 \mathrm{~KB}$

The following data are exported and listed in the following order:

- Number and weight of each year-class (0-10) of cod
- $\quad 2^{\text {nd }}$ Home owners
- Commercial fishing
- Density 0-gr (number km^{-2})
- $\quad 2^{\text {nd }} H o m e ~ r e n t e r s ~$
- Hotel
- Camping
- Density 1-gr (number km^{-2})
- Density (2-10 yrs) (number km^{-2})
- Biomass (2-10 yrs) (ton km^{-2})
- Cod demographic index: E1 = N1/ N(2-10); N1 = Density 1-gr, N(2-10) = Density (2-10 yrs)
- Conflict Factor
- Number of $2^{\text {nd }}$ homes (absolute numbers, and total number allowed (R50).

One row in the excel sheet represents one simulation (1-50 years; columns) and there is room for up to 100 simulations (row 3 to row 102). Between row 104 and row 111 are the calculated minimum (Min), maximum (Max); median, average, number of simulations (Count), standard deviation (Stdev), 5\%percentile and 95%-percentile values over the number of simulations chosen for each of the year in the simulation.

6. Adopting the model to other local cod stocks and fjord systems

The model can easily be adapted to other fjord systems and their cod stock. You have to change the parameters given chapter 2.

7 Calculations

7.1 Cod population

7.1.1 Estimating annual recruitment (Number of 0-group cod)

The left figure shows where the annual recruitment is calculated in the model and the right figure shows the content of the recruitment box. The abundance of the 0 -group cod in the population is modeled as a function of the area of suitable habitats (eelgrass etc; at present the default value is 1) for recruitment, the strength of the 1-group cod and that the spawning stock (year-classes 4-10) consist of more than 100 cod.

7.1.2 Estimating cohort sizes over the chosen time frame

The calculations in the ecosystem model take place in the block shown to the right. When open it the structure will be seen as below. Average numbers of code in the different year-classes of cod are calculated in the different "multi average" boxes.

7.1.3 Estimating survival from 0-group to 1-group cod

The mortality caused by 1 -group cod on the 0 -group cod can be changed by entering this input-table and changes the value in the last line.

\triangle Viewer "CodFish[1]->EcosystemData[3]" (2009-06-25GL. mox)				
		Recruitement multiplier		
Record \#	DataName	Value	Unit	Short comment
1	Real time Aorailable habitat	0.65	km 2	This value changes during simulation (new constructions)
2	High/Low habitat limit	5,00	km 2	See Chapter 4.3
3	1-Group abundance limit	99,00	fishes	To set recuitment
4	Recruitement multiplier	15315,00	Constant K	See chapters 1.4 and 6.2
5	Spawning low limit	50,00	Number Age 2-10	Chapter 1.7: minimum number of $2-10$ groups
6	Avrerage G1 pop.	42889,00	fishes	Table 1.1; used to calculate 0-group mortality (canibalism...)
7	C factor for mortality	0.50	Number	Non autopredation mortality mortality
8	P factor for mortality	0,50	Number	autopredation mortality
9	H factor for mortality	1,00	Number	Habitat factor lower means small fishes can hide better.
10	Total Area of Fiord	23,55	km 2	Total area used for density calculations
11	Initial available habitat	0,65	km2	this is initial value
12	Minimum G0	9317.00	fishes	Minimum recruitment possible
13	Maximum G0	412572,00	fishes	Maximum recruitment possible

The survival from 0-group cod to 1-group cod are calculated in the three figures shown below.

7.2 Social calculations

As avoiding/limiting the level of conflict between locals and tourists is a definitive objective in the policy issue, it would be useful to have this indicator as an output of the model. In addition, it is an input to the function determining how attractive the area is for tourists.

| The calculation of the Conflict indicator is found i |
| :--- | :--- | :--- |
| the block as shown to the right. |

7.3 Economic calculations

| The economic calculations take place in the |
| :--- | :--- |
| bloc shown on the left. The different |
| calculations are taken place in the blocs shown |
| below |

